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System architecture

Performing large scale simulations of the incentive auction and analyzing the results involves a
wide range of software and hardware resources. In addition to running simulations on local
machines, we harness the power of the cloud to achieve simulations at a much larger scale than
would have been otherwise possible. Scaling up the simulations, however, also scales up the
volume of data that needs to be analyzed. Our analysis made use of many powerful software
tools to convert this large volume of data into meaningful results. We give a brief description of
the key hardware and platform resources our simulations required.

Our simulations make use of both local and cloud computing resources. While most
development and analysis work is completed locally, cloud resources are critical to simulating a
wide variety of alternatives and scenarios in a timely manner.

Local resources
Our local computing resources consisted of two Dell PowerEdge T620 servers, each with dual 6
core/12 thread 3.50GHz Intel Xeon E5 2643 v2 processors, and 64GB of 1866MHz RAM.

Cloud resources
Our cloud computing resources are obtained from the Amazon Elastic Compute Cloud (EC2)
service. We primarily run our simulations on their compute optimized C3 instances; these
provide virtual machines running on servers equipped with 2.80GHz Intel Xeon E5 2643 v2 Intel
Xeon E5 2680 v2 processors. Virtual machines are available with the ability to execute a range
of numbers of execution threads, and have access to 3.75GB of RAM for every two execution
threads.

Our software resources fell into four broad categories: those required to implement our
simulation; those required for detailed impairment modeling; those required to scale our
simulation up to the cloud; and those required to analyze and assess the large volume of data
produced by our simulations.

Simulation platform
Our simulation software uses the PicoSAT solver (see Biere 2008) when determining feasibility
of station repacking; it uses Gurobi to solve optimization problems arising when minimizing
impairment during the RZR and DRP processes.

Impairment modeling
Generating the impairment data used in our simulations depended on interference data
produced via TVStudy software and on geographic data provided by the U.S. Census Bureau.
Processing of the TVStudy software inputs and outputs was handled in Python, with extensive
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use of the Fiona and Shapely libraries for working with geospatial data, and the Pyproj interface
to the PROJ.4 library for coordinate system conversions and projections.

Cloud computing
When running simulations in the cloud, we use the StarCluster project from MIT for creating
and launching of computing clusters on Amazon’s EC2 service. StarCluster provides a
distributed, Linux based computing environment with management and balancing of
computing jobs via the Open Grid Engine batch queuing system.

Post processing and analysis
The large volumes of data produced by our cloud simulations requires the use of sophisticated
tools to produce meaningful results and derive insights. Initial processing of the data is handled
via Stata and the Pandas library for Python. Visualization and analysis is largely performed in
Tableau Desktop.

Auction simulator

Simulations are critical to our evaluation of scoring rules and other design choices under a wide
variety of conditions. We outline here the key details of our simulator. We focus on details or
assumptions that went into our particular simulator, and refer the reader to the Comment PN
for the full details of the proposed reverse auction design. Many of the key technical details of
our auction simulator were involved in our implementations of RZR and DRP, our handling of
impairment minimization, and our feasibility checker, each of which we discuss in detail later.

The main logic of the auction simulator is simple. Initially, either the RZR process or the DRP
process is run on all auction participants. This determines the initial set of repacked stations,
any stations that exited or were frozen by this process, and the prices paid to stations frozen.
Once the RZR or DRP process has completed, the main auction simulation begins with the initial
repacking and set of active bidders that result from this process. The auction process itself
involves repeated rounds of bidding, where each round involves a decrement of the clock, and
any station exits or freezes that result from lowering prices. The process of a single round can
be seen in Figure A1. This repeated lowering of the auction clock continues until all stations
have either exited or been frozen, at which point the simulation concludes.

In order to focus our results on the aspects of the auction we felt most critical to our analysis,
we made several key assumptions. First, all of our simulations focused on UHF stations; the
interactions and complexity of bids to move to VHF complicate the auction process without
much return. Similarly, we assume straightforward bidding on the part of participants: all prices
are evaluated simply by comparison to reservation values, and accepted or rejected accordingly
if they are above or below those values. Finally, we note that all feasibility checks required
during the course of the auction, RZR simulations, and DRP simulations are performed using our
feasibility checker (described in detail later).
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Figure A1: Flow chart of single round of reverse auction simulation
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Feasibility checker

Determining the feasibility of repacking stations is a key technical challenge that a successful
incentive auction must overcome. This difficulty arises from fundamental computational issues:
the repacking problem is readily shown to belong to a class of known hard problems in
computer science, which have no known generally efficient solutions. While theoretically
intractable, the outlook is fortunately much less bleak in practice. As noted, for example, by
Leyton Brown (2014), the repacking problem lends itself to being expressed as a classical hard
problem, namely the Boolean satisfiability problem (SAT). Many heuristics have been
developed for the SAT problem that provide efficient solutions in practical applications much of
the time. Additionally, solution methods can be tuned to the particular problem instances
arising during the incentive auction. For example, both the structure of the interference
constraints limiting how stations may be repacked, and the fact that most of the problems we
solve are incremental—whether a single station can be added to a set we already know can be
repacked—provide natural avenues for improvement.

Improvements such as those mentioned above can boost performance in practice, but they
cannot completely avoid the fundamental difficulty of the underlying problem. Despite
reducing the complexity of the SAT instances that must be solved, and even completely
avoiding the need to solve a SAT problem in some cases, it is inevitable that not all instances
will admit efficient solutions. In the context of the auction, choosing to repack a station is a
commitment to assign it a channel once the auction completes, and so whenever we cannot
efficiently determine the feasibility of a station we must assume the worst and consider it
infeasible to repack. As such, the goal becomes to develop a feasibility checker that runs
efficiently while solving as many of the problems presented to it as possible.

Just as a successful incentive auction must overcome the challenges of the repacking problem,
so must any successful simulation of the auction. In the rest of this section, we outline the
technical details of how we handle feasibility checking. Our overall approach combines an
established SAT solver with several pre solving routines designed to minimize the complexity
and number of problems the SAT solver must handle. We begin by briefly describing the
interpretation of the repacking problem as an instance of the SAT problem, and how we solve
these instances, and then go on to describe our pre solving routines. As our pre solving
routines are based on the interpretation of the interference constraints in the repacking
problem as a mathematical graph, we discuss this structure before describing the details of the
pre solving routines themselves.

We will briefly sketch the interpretation of the repacking problem as an instance of SAT. A more
complete description of this interpretation can be found in materials from the FCC LEARN
Workshops (see, for example, Leyton Brown 2014). Instances of the SAT problem ask whether a
logical statement can be satisfied. In particular, SAT focuses on statements that can be viewed
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as asking whether a sequence of claims can all be true at the same time, where each claim is
that at least one of a specific set of conditions is true. This naturally captures the repacking
problem, since a successful repack must:

1. Choose, for every station, a channel consistent with its domain and the clearing target.
2. Choose, for any pair of interfering channel assignments that could be made for two

different stations, at least one of these channels to leave open.

Although we do not provide the details of the reduction, the above does lead to a natural
formal expression of checking the feasibility of repacking a set of stations as an instance of SAT.

Our feasibility checker utilizes this reduction to express repacking problems as SAT instances.
We then use the freely available solver PicoSAT to determine the feasibility of each problem
encountered. As previously mentioned, it is an impossible goal to efficiently solve every
instance of SAT, and one must balance resources expended trying to solve instances against
quality of solution. Our chosen solver, PicoSAT, provides various parameters for adjusting how
much time is spent attempting to determine feasibility before declaring failure. The parameter
we use to cut off execution in our simulations is the propagation limit. Although the details of
how this parameter affects solver behavior depends on internal aspects of the PicoSAT solver’s
implementation that are outside the scope of this paper, we use this parameter as it gives each
problem instance the most consistent amount of time. The solver performance is shown in
Table A1. In this table, “unknown” instances are those which we did not solve because they
reached our cutoff threshold before producing an answer; as previously mentioned, when
checking whether we can feasibly add a station to our current repack, we must be conservative
and freeze the station whenever we fail to determine feasibility, just as we would if the
instance proved to be infeasible. We can see that, on average, both infeasible and feasible
solutions are found significantly before the average SAT solver cut off occurs.

Table A1: Feasibility check performance

Feasible Frozen
Infeasible Unknown

Average number of solutions 838,410.77 157.59 336.59
Average solution time

(seconds) 0.01 0.75 5.70

Max solution time (seconds) 7.71 13.61 13.34

We experimented with various settings of the propagation limit and found that a limit of 10
million worked well for the purposes of simulation. This conclusion is supported by Figure A2,
which shows the cumulative number of feasibility checks by solution type, excluding feasible
solutions. In this figure, we can see that the solution rate has largely plateaued by the time our
execution cut off begins to have an effect. This motivates our choice of cut off, as we must
consider marginal benefit from a higher cut off. In particular, since every simulation involves
about 8 hundred thousand feasibility checks, even small increases have a large cost in
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computation time. This cost must be weighed against the amount of extra information
obtained. Figure A2 suggests that the additional information of running the feasibility checker
for long periods of time results in little additional information. Especially for our purpose of
evaluating alternative scoring rules and other design decisions, setting a propagation limit of 10
million appears appropriate. This results in spending about 6 seconds on unknown instances
before reporting failure to solve them.

 
Figure A2: Cumulative number of feasibility checks

In developing the pre solving routines in our feasibility checker, we leverage special structure
present in the interference constraints between stations. In particular, one can think of
interference between two stations as linking them together. Understanding the links of
interference between various groups of stations yields critical insights into the structure of the
repacking problem. As seen in previous work, this structure can be leveraged to significantly
improve feasibility checking routines. Formally, the links that interference creates between
stations induces a graph structure on the set of stations, and several key insights into the
interactions between stations during the repacking process can be obtained from graph theory
and other areas of mathematics.

One class of pre solving routines our feasibility checker implements is based on determining
how closely interference links pairs of stations. As suggested by Leyton Brown (2014), a key
observation is that, when packing a set of stations, these interference links identify which pairs
of stations directly affect each other when choosing a channel assignment. Furthermore,
although stations not directly linked can impact each other’s channel assignments, for this to
happen the two stations must be linked by a daisy chain of intermediate stations, each one
directly linked to the last. As noted in previous work, the longer the daisy chain needed to link
two stations by interference, the less likely it is that their channel assignments have any effect
on each other. Intuitively, the more links separate two stations, the larger the set of stations
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that must all be involved if the two are to have an effect on each other. For example, in Figure
A3, for station A to affect station E, station C must be involved, whereas for station A to affect
station G, at least two additional stations must be involved. When combined with the fact that
most of the problems we encounter in the context of the incentive auction ask whether a single
station can be added to a repacking, this observation leads to several natural pre solving
approaches that can greatly reduce the size and complexity of the problems that we must
submit to the SAT solver.

F
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B

Figure A3: Locality of interference constraints

One immediate improvement that can be made comes from the fact that if two stations are not
connected—either directly or by some daisy chain—through the currently repacked set, the
feasibility of repacking one of these stations is completely independent of the other. So if, for
example, in Figure A3 stations A, C, and G are currently repacked, we only need to look at
stations A and C to evaluate the feasibility of adding station E to this repack set. Thus, when
determining whether a station can be repacked, our solver limits the problem to just the
stations that are linked by interference to the station in question, either directly or through a
daisy chain. This can lead to significant improvements; for example, the East and West coasts
are completely disconnected in terms of interference, and so any repacking of a station on one
coast can completely ignore stations on the other.

Another improvement we can make is based on the observation that, the longer the daisy
chain required to link two stations together, the less likely it is that the presence of one will
impact the feasibility of repacking the other. Thus, before asking whether it is feasible to pack a
station, we ask simpler questions about whether it can be repacked when only considering the
stations closest to it. When determining whether a station can be feasibly repacked, we first
consider whether we can repack the station itself; the station and those directly linked to it;
and the station and those at most two links from it, in isolation from all other stations. For
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example, in Figure A3, we can see that station A is one link away from each of stations B and C,
two links away from each of stations D and E, three links away from station G, and not
connected at all to station F. Thus, we would first consider just station A; then stations A, B, and
C; then stations A, B, C, D, and E; and finally all stations except station F.

One subtle issue with the above approach is what we can infer about the overall problem from
these local problems. In particular, we must be careful about how we formulate these local
repacking problems, and about what we infer regarding the overall feasibility of repacking a
station from the smaller problems we formulate. The key question is how we handle stations
that are outside the local set of our focus.

One approach is to simply ignore them, leaving them out of the repacking problem entirely.
Notice, however, that if we determine it is feasible to repack the local set of stations, there is
no guarantee that our local channel assignment is compatible with the channel assignment we
currently have for other stations. We can, however, be sure that if we cannot repack this small
set of stations while ignoring the larger set, there is no hope to find a repacking that works for
both the local set and the larger set at the same time. Thus, we can extend an infeasibility
result from the local set to the full one, but not a feasibility result.

Another approach is to include the larger set of stations, but keep the problem local by forcing
those stations outside our local set to remain on their currently assigned repack channels. This
has the opposite problem: any repacking of the local set that we find is compatible with our
existing repack by construction. But if we cannot repack the local set there is no guarantee that
we could not have done so if we had the flexibility to adjust the channel assignments made for
the larger set of stations.

Due to the above considerations, our pre solving routines try both approaches for each of the
local sets we consider. As soon as we see a result that allows us to infer an answer for the full
set, we stop our search and report the answer; if none of the local problems yield a general
answer—either because they return no answer, or one without implications for the larger set—
we then expand our efforts to ask the question for the full set of stations linked by interference
to the station we wish to repack.

Another class of pre solving routines that our feasibility checker implements is based on
identifying groups of stations that are all strongly linked to each other by interference
constraints. Specifically, we are interested in sets of stations where every pair of stations within
the set interfere with each other; in the language of graph theory, such a set of stations forms a
clique with respect to the interference links between stations. Critically, if we have such a set of
stations, then each must be assigned a channel different from all other stations in the set, and
so we cannot feasibly repack the entire set if there are fewer channels available than there are
stations in the set. As Kearns and Dworkin (2014) observed, many infeasible repacking instances
can be attributed to the presence of such a set of stations blocking the repacking.
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Our pre solving routines leverage this notion of blocking cliques to identify stations that
become infeasible to repack due to such a configuration. In particular, we use the fact that as
soon as the number of stations we have repacked in a clique reaches the total number of
channels available at our current clearing target, we can immediately declare all remaining
stations in this clique as being infeasible to repack. By tracking when such cliques reach their
capacity, and identifying the stations that become infeasible when this occurs, we are able to
avoid the need to perform any further computation—notably, any need to solve SAT
instances—to determine that these stations must be frozen.

One challenge in implementing the pre solving technique described above is that identifying all
of the cliques in a graph is a computationally hard problem. In fact, even the simpler task of
determining just the size of the largest clique belongs to the same class of problems as SAT.
One approach to surmounting this challenge seen in prior work is to perform random sampling
to get a large subset of cliques. We take a different approach and implement the Bron
Kerbosch algorithm for finding all maximal cliques, and in particular the variant proposed by
Eppstein et al. (2010). Although in theory the runtime of this algorithm can quite be long, we
found that in practice it computes all maximal cliques in the interference graph in a matter of
hours. Furthermore, most of this time is spent on identifying small cliques. Since only cliques
with more stations than there are channels available under a clearing target are relevant to our
pre solving approach, we prune the search space of the algorithm to remove such small cliques.
We found that doing so cut the computation time down to be on the order of minutes.

One subtlety in implementing this pre solving routine is how the links between stations should
be defined, especially since two stations that interfere with each other on one channel may not
interfere on a different channel. To avoid the chance of misidentifying stations that are feasible
to repack as being blocked by a clique, we use the following criteria: we consider two stations
to be linked if, given a particular clearing target, there is no channel available on which both
stations can be simultaneously placed. We include both cases caused by co channel
interference, and cases where one (or both) stations are prevented by domain restrictions from
being placed on a channel.

While the strength of the above definition guarantees the correctness of all produced results, it
brings with it some shortcomings that must be addressed. Most significantly, it ignores the fact
that in addition to co channel interference, it is also possible for stations to experience
adjacent channel interference. Such interference can, in some cases, result in the need to space
stations in a clique more widely among available channels. In such cases, we can never
simultaneously repack the theoretical maximum number of stations the clique can tolerate. Our
pre solver cannot gain any benefit from cliques where this happens when using the naïve
bound on clique capacity; to counteract this, when computing our cliques, we also utilize an
optimizer to calculate the maximum number of stations from the clique that can be
simultaneously repacked, and use this as the clique’s capacity in our pre solver. Another
shortcoming of the approach is that since our definition takes both interference and station
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domains into account, links between stations are dependent on the clearing target. Thus, we
need to compute our lists of maximal cliques once for every possible clearing target.

In implementing this pre solving routine, we first precompute the full list of cliques induced by
interference between stations, for each possible clearing target; for each clique, we use an
optimizer to find the maximum number of stations that can be simultaneously repacked from
the clique, and save this as the clique’s capacity. At the start of a simulation run, the feasibility
checker initializes a list of cliques (and their associated capacities) from the appropriate
computed list. Over the course of the simulation, the feasibility checker tracks the number of
repacked stations in every clique. Each time a station exits and is repacked, every clique it
belongs to has its count of repacked stations updated, and for any clique that reaches capacity,
any stations belong to the clique that are not already repacked are frozen.

Simulation of initial stages of the auction

The initial stages of the incentive auction play a critical role in determining both how the
reverse auction will proceed, and what spectrum will be available for purchase in the forward
auction. Here, we discuss two key tasks the initial stages must address: setting a clearing target,
and successfully handling situations where there is a lack of competition. We begin with the
latter, describing our implementations of the RZR and DRP processes, and conclude with a
description of our proposed clearing target selection process.

Our simulations included a full implementation of our proposed RZR procedure. We refer the
reader to Figure A4 for an overview of the RZR procedure itself. Here we describe our
implementation of RZR for the purposes of simulation. To put this discussion in context, we
briefly outline the steps in the RZR process below.

1. We identify all stations rejecting opening prices, and place them in an initial repack set.
2. We select a clearing target based on this initial repack set.
3. We repeatedly apply the RZR procedure, until either no new stations freeze in round

zero, or all stations that do freeze accept the offered RZR price.
4. We determine the final pre auction state of all participants.

Since our simulations assume straightforward bidding by participants, step 1 is simply a matter
of comparing reservation values against opening prices; similarly, step 4 simply requires
checking whether each station accepting a RZR prices is still frozen by the final repack, and
either making a RZR payment to them or allowing them to continue to the auction proper as
appropriate. Step 2 is addressed in a later subsection. Step 3 involves the most complexity, and
so we focus on it.

Each round of RZR has three main steps: first, all stations that have rejected either opening
prices or RZR prices are repacked, potentially on channels in the 600MHz band as necessary;
second, all participating stations that have yet to receive a RZR offer are checked to see if this
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new repack causes them to freeze in round zero; and finally, all stations newly frozen in round
zero are offered their RZR price. The above process continues until we have a round where
either no new stations are frozen in round zero, or all stations that are newly frozen accept
their offered RZR price.

The main technical challenge in implementing the RZR process comes from finding a repack of
the stations which have rejected either opening or RZR prices. Our implementation seeks a
repack of the stations that achieves the minimum possible impairment. It does so by
formulating an appropriate instance of the optimization program given in Figure A6 and
submitting it to the Gurobi optimizer.

Once we have solved our optimization problem and repacked the stations that have rejected
offers so far, we proceed to identify any newly frozen stations. We then simulate the process of
making each newly frozen station a RZR offer. We handle the process of identifying newly
frozen stations via our feasibility checker: we initialize it with the channel assignment found by
the Gurobi Optimizer, and then query it to see whether each of the remaining stations can be
feasibly added to this set of repacked stations. If not, we must offer the station their RZR price.
As our implementation assumes straightforward bidding by participants, evaluating a bidder’s
response to such an offer is a simple matter of comparing the offered price to the station’s
reservation value.
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Figure A4: Overview of RZR process
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Our simulations included an implementation of the DRP procedure proposed in the Comment
PN. While we feel our implementation is a natural one, we do wish to highlight that the
Comment PN does leave key aspects of the DRP procedure unspecified; this means that there
are many valid potential implementations, which may differ substantially from each other. We
therefore begin by giving an overview of the DRP process and discussing the key design
decisions that must be made to successfully implement DRP. After this, we proceed to describe
the design choices we made in our own implementation.

The DRP process splits the auction into two phases: an initial phase in which DRP is said to be
“on,” and a second stage in which DRP is said to be “off.” Once DRP is off, the auction proceeds
according to its normal rules. While DRP is on, however, the operation of the auction changes in
the following critical way: when a station becomes infeasible to repack, rather than freezing it
at its current price, it is instead added to a list of pending freezes and its price is allowed to
continue decreasing. The station’s price will continue to drop until either it exits, requiring it to
be repacked in the 600MHz, or DRP is turns off, causing it to be frozen at its current price at
that moment.

The key design decisions in implementing DRP revolve around determining when DRP switches
from being on to being off. At a high level, this is decided by comparing the total current and
potential impairment—caused by stations that have exited and that are on the list of pending
freezes, respectively—to a threshold on the maximum allowable impairment. The key decisions
revolve around determining how potential impairment from stations on the list of pending
freezes should be calculated, and how the threshold on maximum allowable impairment should
be calculated. The Comment PN proposes evaluating potential impairment as the minimum
impairment that could result from stations on the pending freeze list exiting, either all stations
exiting simultaneously or, alternatively, the single station causing the most potential
impairment exiting alone. We focus on the former, as it aligns better with ISIX impairment data.

Calculating the potential impairment from stations on the list of pending freezes is
computationally problematic. In particular, minimizing the total impairment caused by
repacking a set of a stations is a computationally hard problem, and can require an
unpredictable—and possibly quite long—time to solve. This is fundamentally at odds with
meeting an active schedule of bidding rounds. On the other hand, while many heuristics can
provide approximate solutions to this problem, it is not always clear how close the produced
approximations are to the true minimum, or even whether they relate to the true minimum in
any sort of consistent fashion. Thus, we are forced by practical considerations to accept
unpredictable behavior in either the solution time required or the quality of solutions
produced. As a fixed bidding round schedule cannot accommodate unpredictable solution
times, it is almost certain we must accept the latter.

While setting a threshold on allowable impairment is in theory more straightforward than
computing potential impairment, we note that in fact these issues are inextricably linked. Since
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it seems certain we must accept an approximate solution to computing potential impairment,
the nature of this approximation will determine the meaning of any threshold we might choose.
More concretely, say we fix a particular method of computing potential impairment and a
particular threshold on allowing impairment. If we decide we want to reduce the typical
amount of time that DRP remains in effect, we can either reduce the threshold, or change our
calculation method for potential impairment to one that produces, on average, higher
numbers. In other words, in practice our bound on allowable impairment is a bound on
approximate allowable impairment, and the effective bound this translates to on actual
allowable impairment depends critically on the approximation method used. Thus, we can see
that any decisions about impairment thresholds and approximate methods of computing
potential impairment cannot be evaluated in isolation.

With the above in mind, we now give an overview of simulating the DRP procedure, and
describe the design choices we made in our own simulation. Our implementation of DRP
maintains four sets at all times:

a repack set, containing all station assigned to non impairing channels;
an impairing set, containing all stations to be repacked on impairing channels;
an active set, containing all stations still actively participating in bidding; and
a pending freeze set, containing all station which remain active but cannot feasibly be
added to the repack set.

At all times, we maintain a feasible, non impairing channel assignment for all stations in the
repack set; channel assignments for stations in the impairing set are made independently in
each round using a greedy heuristic. The main steps of our simulation are as follows:

1. Initially, identify all non participating stations, and find a minimum impairment channel
assignment of these stations.

2. Add all nonparticipating stations to either the initial impairing set or the initial repack
set, based on whether or not the assignment found in 1 placed them on an impairing
channel; we add all participating stations to the active set.

3. While DRP remains on, repeatedly find the next station to exit and do the following:
a. If the station is in the active set, move it to the repack set; find any new stations

frozen by this and move them to the pending freeze set.
b. If the station is in the pending freeze set, move it to the impairing set.
c. Compute the total existing and potential impairment using a greedy heuristic.
d. Compare the total impairment calculated in c above and turn DRP off if it

exceeds our threshold on allowable impairment.
4. Compute a minimum impairment channel assignment for all stations in the repack and

impairing sets
5. Freeze any stations that cannot be feasibly added to the assignment found in 4 at their

current prices.
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Since we assume straightforward bidding, finding nonparticipating stations and the exit order of
participating stations is simply a matter of comparing valuations to prices. All tests for the
feasibility of adding a station to the repack set are performed with our feasibility checker. The
impairment minimizations in steps 1 and 4 are performed using appropriate instances of the
optimization program in Figure A6. Thus, the only technical details left to address are threshold
selection and computation of potential impairment.

Our simulations used two different thresholds: a fixed threshold of 20% of the total national
weighted population, and a threshold of the initial impairment found in step 1 plus 3% of the
total national weighted population.

Our potential impairment calculations used the following greedy optimization heuristic. We
begin by fixing the current channel assignments of all stations in the repack set. We then
compute the (approximate) potential impairment caused by stations in the impairing and
pending freeze sets by repeating the following process. We incrementally construct a channel
assignment for the stations in the impairing and pending freeze sets by repeating the following
process. For each station in the impairing and pending freeze sets, we consider each channel
still available to that station for assignment, and compute the marginal increase in potential
impairment adding it to our current assignment would cause. . We then make the channel
assignment that, among all of those we considered, caused the minimal increase in potential
impairment. While ideally at the end of this process we will have assigned every station in the
impairing and pending freeze sets to a channel, this is not guaranteed to be the case: we may
make early choices that jointly interfere with all possible channels available to some other
station in the impairing or pending frozen sets. In order to achieve as conservative an estimate
of the potential impairment as possible, we set the impairment cost of any station left
unassigned at the end of this process to be the maximum total impairment it could cause in
isolation when assigned to any channel in its domain.

Our proposed procedure for optimizing the clearing target is extremely simple. We identify the
largest target that is achieved with minimal impairment in each of the New York and Los
Angeles PEAs, and then set the larger of these as our national clearing target. The main detail
that must be specified is exactly how we implement finding the maximum possible clearing
target in each of these two critical PEAs. The approach we use is based on ISIX impairment data.
Note, however, that we manually disallow the clearing targets above 126MHz.

Given a list of nonparticipating stations, we begin by computing the minimum level of
impairment we can achieve in each of the New York and Los Angeles PEAs at each potential
clearing target. In order to compute the minimum possible impairment in a specific PEA for a
given clearing target, we use a modified version of the optimization program in Figure A6. Our
modification is quite simple: we assign unit weight to each license for the given PEA, and zero
weight to all others. This modified program will tell us the minimum impairment we could ever
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achieve in the given PEA at a particular clearing target (ignoring the impact on other PEAs).
Once we have computed all of the relevant impairment levels, we simply find the largest
clearing target at which the impairment level in each of New York and Los Angeles still qualifies
as minimal.

The final issue that must be addressed in our proposed clearing target selection process is what
level of impairment should qualify as minimal. In early simulations we used a more simplistic
model of impairment, and found that a requirement of zero impairment was quite successful;
more recent simulations, however, have used the more detailed ISIX impairment data, and we
have seen that a strict zero impairment rule is susceptible to lowering the clearing target
significantly due to impairment that does not result in a single non saleable or category 2
license, and that in fact can be quite close to zero. This indicates it is appropriate to relax this
requirement to allow some small amount of impairment; in our most recent simulations, we
found that a threshold limiting impairment to be less than the equivalent of 0.3 blocks to give
good results (see Figure A5).

Figure A5: Clearing targets selected when requiring at most 0.3 blocks of impairment

Modeling impairment

A key technical challenge in accurately simulating the initial stages of the incentive auction is
correctly modeling and calculating impairment arising from the placement of television stations
in the 600MHz band. All impairment data used in our simulations was generated by following
the ISIX methodology as described in the Comment PN and in the ISIX Second R&O. We focus
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here on details specific to our implementations, and refer the reader to those documents for a
full description of the ISIX methodology.

Generation of ISIX data
The impairment data used in our simulations was generated by replicating the full ISIX
methodology. We leave description of this complex process itself to the relevant FCC
documents, and focus on implementation details specific to our simulations. All data on
television station signal fields, interference, and contours was generated using version 1.3.1 of
the TVStudy software; all population and geospatial data came from the US Census Bureau’s
2010 TIGER products.

The most difficult impairment case to model is that of wireless base station transmitters
causing interference to DTV receivers. This difficulty arises from the fact that the ISIX
methodology requires this type of interference be modeled by overlaying the entire country
with a grid of hypothetical wireless based stations, placed every 10 km. We note that as neither
the Comment PN nor the ISIX R&O specified this grid beyond the spacing, our implementation
may use a slightly different grid than the FCC’s implementation; however, due to the relatively
small granularity of this grid, any differences should have no substantial impact on the resulting
data. Finally, we omitted stations from our ISIX computations that our analysis indicated had a
freeze probability equal to zero in all clearing targets up to 126MHz. This had no impact on the
simulations, as any station which never freezes in any exit order will never need to be placed in
the 600MHz band.

The computation required to analyze all of these wireless base stations is substantial, as there
are more than 80,000 of them. While the Comment PN references processing interference
between television stations and hypothetical base stations by considering all base stations
within a 500 km radius of a television station (or a set of nearby television stations), we found
that the relatively large number of wireless based stations compared to television stations
meant that processing all television stations within a 500km of fixed set of nearby wireless base
stations to provide a more manageable division of computation. In particular, we grouped
wireless base stations by the state they were located in when running our computations. This
difference should have no impact on the final data, however.

Finally, in order to make optimization feasible when minimizing impairment, the ISIX
methodology aggregates all data to the county level. The Comment PN suggested a range of
possible thresholds for what percentage of the population in a county must suffer impairment
before the county as a whole is considered impaired; we chose to be conservative and used the
lower end of this range, 10%, when generating ISIX data for our simulations.

Impairment minimization
All impairment minimizations required for our simulations were carried out using full ISIX
impairment data generated according to the ISIX R&O. Our optimization program, given in
Figure A6, uses the ISIX impairment constraints described in Appendix B, section 5 of the
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Comment PN. When running hundreds of simulations, however, this optimization problem
becomes a significant computational burden. While optimizing the total weighted impairment is
costly, computing the total impairment caused by a particular assignment of stations to
channels is quite simple, given ISIX impairment data. Thus, a natural approach is to use a
simplified approximation of the constraint data in the optimization itself, and then calculate the
true impairment caused by the channel assignment this produces. Our simulations used just
such an approach, replacing the county level impairment constraints in the optimization
program with less detailed aggregated impairment constraints for a subset of PEAs. We discuss
this modification below.

Figure A6: Optimization program for impairment minimization using ISIX data

Our modification arose from two considerations: first, that a full optimization introduced an
impractical computational burden to the task of simulating the auction in full; and second, that
the majority of weighted population is concentrated in a very small number of PEAs. For
example, the top 5 PEAs (by population) account for over 40% of the total national weighted
population, while the top 35 account for over 75% of the total. Thus, we considered approaches
that model the impairment in top PEAs (by population) exactly, while approximating the
impairment in PEAs with smaller populations.
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Before we discuss our modifications to the optimization program, we briefly review the
variables and sets involved in the original optimization program given in Figure A6. Since the
constraints feature only minor differences from those given in Append B of the Comment PN,
we refer to the reader to that document for a full discussion of the motivation and intuition
behind the various constraints, and just review the definitions necessary to the optimization
program. The optimization program depends on several sets:

is the set of all stations, is the set of all UHF channels, and is the set of all wireless
licenses available at the current clearing target;

is the set of stations that must be repacked;
is the set of channels available to station (i.e. its domain);
and are the sets of all co interfering and adjacent interference pairs of

channel assignments, respectively, restricted to the repack set R;
is the set of counties contained in the PEA covered by license ; and

and are the sets of channel assignments which cause
impairment to license in county

Given the above sets, we now define the constants and variables used in the constraints of the
optimization program specified in Figure A6:

equals the total weighted population in the PEA for license , computed by
multiplying the population of the PEA by a PEA specific index value, both as given in
Appendix F of the Comment PN;

and are constants representing the portion of the population covered by
license that is contained in county , evenly divided between uplink and downlink;

is a binary indicator variable for whether station has been assigned to channel ;
and are binary indicator variables for whether the downlink or uplink

portion, respectively, of license has been impaired in county ;
is a continuous variable representing the percentage impairment of license ; and
is a binary indicator variable for whether license has been impaired to an extent

greater than the 50% threshold and thus become non saleable.
The above definitions, along with the optimization program in Figure A6, are sufficient to
describe our modifications to the optimization program. A deeper understanding of the
constraints themselves may prove useful in understanding our modifications, and a detailed
discussion of the motivation behind and intuition for them can be found in the Comment PN.

We now describe the modifications to the optimization program in Figure A6 that we used in
our simulations. The modifications are based around splitting the set of PEAs into two groups,
based on their population rank: given a predetermined cutoff , we form a detailed group and
an aggregated group, containing PEAs with population rank at least and population rank
strictly less than , respectively. We redefine as the set of wireless licenses for detailed PEAs,
and define as the set of wireless licenses for aggregated PEAs. Constraints on licenses in the
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detailed set remain unchanged; those in the aggregated set are modified as described
below.

Figure A7:
Modified constraints for aggregated PEAs in approximate optimization program.

For each aggregated wireless license , we begin by aggregating relevant sets and variables.
We only describe these modifications for the downlink portion of licenses, but the
modifications for the uplink portions are symmetric. First, we replace the set of binary county
level impairment variables with a single continuous PEA level impairment variable .
Second, we union the sets of impairing channel assignments for each county in to create the
single combined set

of aggregated PEA level impairing assignments. Finally, for each of the
impairing assignments , we sum all of the individual county level impaired
population percentages associated with this particular assignment to obtain a total impaired
population percentage Using the above definitions, we can

now define the new constraints for our optimization program. For each of the aggregated
licenses , we relax each of the constraints (1), (5), (6), (7), and (13). We give these
relaxations in Figure A7. The intuition for each of these changes is as follows:

the relaxed constraint ( ) enforces that impairment to license is (at least) the sum of
the impairments to its uplink and downlink portions;
the relaxed constraint ( ) and ( enforce that the downlink and uplink portions of
license , respectively, are impaired to at least the extent that any single channel
assignment impairs each of them;
constraint ( ) enforces that the uplink portion of license is impaired to at least the
same extent as the downlink portion; and
constraint ( ) relaxes the PEA level impairment variables to be continuous rather than
binary.

This completes our modifications to the optimization program.

Our modified optimization program has the following useful features. First, the aggregated PEA
level constraints are significantly simpler than the detailed county level constraints, leading to
practical runtimes for the purposes of simulation. Second, observe that for any feasible solution
to the original program, we can produce a feasible solution to the modified program that
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retains the same objective value, by appropriately aggregating the values of the and
variables to produce values for the and variables; this implies that the optimal solution
to our modified optimization program is always a lower bound on the true minimum
nationwide weighted impairment. Finally, our modification provides a simple, intuitive means
of balancing accuracy with performance: by increasing the number of detailed PEAs, one can
achieve a better approximation at the cost of increased runtime. We describe the performance
of this approach in the next subsection.

Performance
Our goal in using a relaxed version of the ISIX constraints in our optimizations was to achieve
results that were as accurate as possible within a span of time that was practical when running
hundreds of simulations, each requiring multiple optimizations. A critical question when using
an approximation is how to evaluate the quality of produced solutions. In our case, the answer
is simple: by design, objective values of our approximate optimization program can never be
higher than their counterparts in the exact optimization program; this means any lower bounds
found during the optimization process apply to the true optimal solution as well. Furthermore,
as previously mentioned there is little computational burden involved in computing the exact
impairment caused by any channel assignment. This allows us to compute for any solution to
our approximate optimization program the exact impairment it would cause in practice. Thus, if
we solve our optimization program, and compare the exact impairment caused by the solution
found to the best objective lower bound found, we know this ratio must upper bound the
relative error of our solution against the true optimum.

Figure A8: Relative error vs optimization time for initial set of optimizations

Our initial runs of the RZR and DRP processes used an optimization program where the top 35
PEAs by population were detailed, and all others were aggregated (see previous subsection for
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details). We solved this optimization program with the Gurobi solver on a server with dual 6
core (12 thread) 3.50 GHz Intel Xeon E5 2643 v2 processors, and 64 GB of RAM. Gurobi was
configured with a 0.01 optimality threshold and a time limit of 120 minutes, and restricted to
use only a single core for each optimization. Figure A8 plots the relative error seen against the
optimization time taken. As we can see from the figure, the largest errors arose not as a result
of the approximation itself, but as a result of optimizations being halted at suboptimal values
due to the time limit.

Based on these results, we re ran those instances that had one or more optimizations halted at
the time limit. We used an even simpler optimization program for these simulations: we
restricted the set of detailed PEAs to include only the top 5 by population, using aggregate data
for all of the remaining PEAs. We still used an optimality threshold of 0.01 and a time limit of 2
hours for these runs. Figure A9 gives the solution time and relative error rates for the final set
of optimizations consisting of these new runs, combined with all of the original runs that did
not have any of their optimizations run out of time. Nearly 85% of our optimizations achieved
answers with a relative error rate of 1% or less; given that the optimality threshold used in
Gurobi was itself 1%, this indicates a high rate of accuracy. Furthermore, over 95% of our
optimizations had relative error of at most 10%. This approach would likely achieve even
higher accuracy with further tuning, and allowing the Gurobi solver more computational
resources for each optimization.

Figure A9: Relative error and runtime rates for final set of optimizations

Scoring rules

The scoring rule determines the opening prices in the reverse auction. These are critical to
motivate participation of broadcasters, as the opening price is the maximum price that a station
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can receive, and a commitment to participate in the auction is a commitment to accept the
opening price.

The scoring rule consists of two components, the base clock price and volume, in particular:

Score = (base clock price) × (volume)

For the base clock price, we considered $1500 in addition to the FCC price of $900. This
alternative base clock prices increase the FCC base clock price to encourage participation and
thereby make the auction more robust to high broadcaster reservation values.

For volume, we focus on these measures in our analysis:

FCC volume = (Broadcast population)1/2 × (Interference count)1/2

Reweighted volume = (Broadcast population)1/4 × (Interference count)1/2

where

Broadcast population = a station’s interference free broadcast population (IF). This is the FCC’s
population measure defined in ¶96 of the Comment PN. We use “broadcast population” rather
than “interference free population” to highlight that this population is referring to broadcast
coverage.

Interference count = a count of the station’s pairwise interference constraints (IC). This is the
FCC’s interference measure also defined in ¶96 of the Comment PN.

Following the FCC’s approach, we scale all volumes to have a maximum value of one million.
This uniform scaling method provides solid ground for comparisons in auction results with
alternative volume metrics.

In this section we compare the two different volumes under analysis, all scaled to have a
maximum value of one million. Figure A10 shows the value of each volume metric. Stations are
in a decreasing order based on their FCC volume.
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Figure A10: Volume curves

The most important difference among the volumes is the steepness of the volume curve.
Reweighted is much flatter than FCC volume. This characteristic cannot be stressed enough. A
flatter volume curve means that high value stations are more apt to be resolved first.
Resolution from big stations to small stations tends to promote efficiency, maximizing the value
of the repack, as small stations are less apt to get in the way of more valuable larger stations.
This intuition is demonstrated in our simulation results. Auctions using Reweighted volume
tend to perform better than FCC volume.

Figures A11 12 show each volume metric on a map. Compared to FCC volume, Reweighted
volumes have a more gradual transition from high value markets such as New York to mid value
markets in the center of the country.
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Figures A11 12: FCC volume and Reweighted volume

Table A2 shows the average opening price for each volume with a $900 base clock price. In top
markets the difference between FCC opening prices and Reweighted is relatively small. For
example, the differences are 8.13% for New York and 9.86% for Los Angeles. In smaller markets
the difference increases, but our simulations show that this does not imply a higher clearing
cost since competition drives opening prices down to competitive levels.
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Table A2: Average Score for top 20 DMAs

The definition of precluded population is the population that cannot be served by any other
station if a certain station is repacked. It is a quantity that can be derived from the pairwise
interference file, together with the associated output from TVStudy. It has many attractive
properties, as discussed in the main text. For example,

For a station that causes no interference, precluded population is its interference free
broadcast population.
Blocked population is only counted once. Unlike some metrics which grow to large
numbers with no intuitive meaning, precluded population produces numbers that still
represent real population counts. They are higher than the broadcast population counts
because they include blocked populations that are outside a station’s service contour or
on adjacent channels. So for the KAMU TV example shown in Table A3, the broadcast
population is only 330,386, but the precluded population is 8.5 million. The
interpretation of these numbers is simply that if KAMU TV is assigned to channel 25, it
will make it impossible for any other station to provide service on channel 25 to 8.5
million people, including 330,386 inside KAMU’s contour, and 8.2 million people outside
of KAMU’s contour. KAMU should be priced equivalently in the auction to other stations
in the same area that block service to 8.5 million people when repacked.

DMA FCC Reweighted
New York, NY
Los Angeles, CA
Chicago, IL
Dallas-Ft. Worth, TX
Philadelphia, PA
Detroit, MI
San Francisco-Oakland-San Jose, CA
Boston, MA
Atlanta, GA
Washington, DC
Houston, TX
Seattle-Tacoma, WA
Tampa-St Petersburg-Sarasota, FL
Phoenix, AZ
Minneapolis - St. Paul, MN
Sacramento-Stockton-Modesto, CA
Cleveland-Akron, OH
Miami - Ft. Lauderdale, FL
Orlando-Daytona Beach-Melbourne, FL
Denver, CO 307,911

473,081
384,091
467,222
496,736
276,556
244,928
503,392
318,235
400,175
536,566
545,247
572,029
550,000
516,019
665,754
430,106
642,731
610,417
768,812

190,222
298,384
266,364
290,864
341,597
160,000
153,237
340,409
205,817
296,842
381,212
389,383
414,251
409,017
361,852
520,556
323,069
516,713
564,549
711,456
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Simulations show that the sum of the precluded populations of all stations that can be
packed onto a single channel across the country averages about 300 million—close to
the national population. Intuitively this is right because in a tight repack almost the
entire national population should be precluded, otherwise there would be open spaces
available for repacking more stations.
The sum of precluded populations of repacked stations is much less variable in our
simulations than the sum of broadcast populations, suggesting it is a better indicator of
volume—when optimally packing a trunk with suitcases the sum of the volumes of the
packed suitcases is roughly a constant equal to the volume of the trunk.

Precluded population is easily calculated using the following method:

The FCC paired interference file lists all the stations with which a given station is
mutually exclusive (“blocked stations”).
Any point that can receive service from a blocked station, but cannot receive service
from any unblocked station is “precluded” from service if the given station is repacked.
With the detailed cell level output files from TVStudy, each precluded point can be
identified, and the population associated with those points can be added up to
determine the total precluded population.
The same method is repeated for a given channel and each of the adjacent channels.
We weight adjacent channel preclusion at 50%, because our analysis indicates adjacent
channel interference had approximately 1/2 the significance of co channel interference.

We did this calculation using a proxy channel (25), but this could easily be done on every
channel and averaged, or on some other basis to reflect varying preclusion across a channel
range.

To get some intuition for the calculation, it is easiest to see an example. The full detail is
available in the code and the resulting measure for each station. We focus on KAMU. Table A3
shows the interference free population and the precluded population for KAMU in each PEA
using a proxy channel 25. The population measures are then found by summing over all PEAs.
KAMU has 330,386 interference free pops and 8.551 million precluded pops.
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Table A3: Precluded population by PEA for KAMU TV (using proxy channel 25)

Here are the steps of the calculation. The calculations are done for every 2 km × 2 km cell using
detailed coverage data produced by TVStudy. However, the basic logic is easiest to understand
graphically.

Figure A13: Contour of KAMU (red), contours it interferes with (blue) and does not (green)

facid PEA IntFreePop
Precluded 

Pop CO
Precluded 
Pop Adj+

Precluded 
Pop Adj-

Total Precluded 
Pop Count

65301 Houston, TX 12,662          5,821,376    -                -             5,834,038              
65301 Austin, TX 11,787          1,085,088    -                -             1,096,875              
65301 Waco, TX -               621,992      -                -             621,992                 
65301 Nacogdoches, TX 30,794          333,720      44,144           36,914        405,043                 
65301 Beaumont, TX -               4,320          -                -             4,320                     
65301 Victoria, TX 52,077          105,250      189               24               157,434                 
65301 Eagle Pass, TX -               225             -                -             225                       
65301 Bryan, TX 220,054        1,022          -                -             221,076                 
65301 Brownwood, TX -               32,309        3,990             1,729          35,169                   
65301 Corsicana, TX -               22,209        -                -             22,209                   
65301 Lockhart, TX 3,012           57,693        -                -             60,705                   
65301 Jacksonville, TX -               152             -                -             152                       
65301 Natchitoches, LA -               17              -                -             17                         
65301 Mineral Wells, TX -               699             -                -             699                       
65301 Gonzales, TX -               88              -                -             88                         
65301 Marble Falls, TX -               62,051        -                -             62,051                   
65301 Del Rio, TX -               14              -                -             14                         
65301 Lampasas, TX -               25,078        -                -             25,078                   
65301 Brady, TX -               3,897          -                -             3,897                     
65301 (blank) -               -             -                -             -                        

Total 330,386        8,177,200    48,323           38,667        8,551,081              
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Figure A13 shows the first step. For a given station (shown in red), we find all the contours it
interferes with (in blue) and all the contours it does not interfere with (in green).

Figure A14: Precluded population (co channel)

Figure A14 shows the second step. We remove all the blocked blue contours, leaving only the
green contours that can potentially be repacked co channel with the subject channel (KAMU).
Any population that is inside a blue contour but is not inside a green contour is precluded from
service if the station is repacked. The yellow and orange areas are precluded. The orange area is
the station’s own service area. If the station did not interfere with any other stations, then only
the orange area would be precluded. The results can be aggregated in a variety of ways. Below
the results are totaled by PEA as in Table A3.



A 31

Figure A15: Precluded population (adjacent channel above)

Figure A15 shows the third and final step. The same method is applied to the adjacent channel
above and the adjacent channel below (Figure A15 only shows the adjacent channel above
calculation). KAMU has little adjacent channel blocking effect. The precluded population
calculation includes only ½ of the adjacent channel blocking, because our analysis indicates
adjacent channel interference had approximately ½ the significance of co channel interference.

Figure A16: Cumulative distribution of precluded population and broadcast population
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Figure A16 shows the cumulative frequency of precluded population and broadcast population.
All stations have a higher precluded population than broadcast population, but the difference,
as a proportion of the broadcast population, gets smaller as stations with higher populations
are considered.

Figure A17: Map of broadcast population

Figure A18: Map of precluded population

Figures A17 and A18 show maps of broadcast population and precluded population. The color
and size represent the value for each measure; the larger and darker every mark is, the higher
the associated population. Precluded population is more evenly distributed in all markets. This
is especially important in New York and Los Angeles since relatively small stations, using the
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broadcast population metric, are more apt to be repacked, preventing larger stations from
serving nearby population.

Repacking constraints interact in complex, hard to predict ways. Thus, we propose to study the
difficulty of repacking stations via an outcome based, rather than input based, analysis of the
repacking process. We propose the freeze probability (FR), the long run frequency that a
station freezes given a random exit of stations, as a measure of a station’s importance in the
repacking process. The freeze probability is readily calculated by simulating thousands of
auctions with random station exits.

Our calculations (a) assume full participation by all eligible stations; and (b) use completely
random exit sequences for the set of stations. This combination of assumptions ensures both
that we include the effects of all interference and domain constraints and that our results are
free of any bias from a particular valuation model.

We compute the freeze probability as follows. Each simulation follows the same basic steps:

1. Choose a uniformly random order over all UHF stations
2. Begin with an empty repack set
3. For each station in turn check whether it can be feasibly added to the repack set:

a. If yes, repack the station (add it to the repack set)
b. If no, freeze the station and leave the repack set unchanged

4. At the end of the above process, every station is either repacked or frozen.

We run the above simulation process for a predetermined number of repetitions. At the end,
we compute the fraction of the total number of runs in which the station is frozen; this is the
station’s freeze probability.

One caveat is that the freeze probability analysis is sensitive to station domains; because of
this, the measure varies as a function of the clearing target, and is strongly affected by border
constraints. One approach we have tried is considering a domain free variant of freeze
probability, but this faces the challenge that it becomes difficult to capture natural market level
variance in number of available channels—for example, that due to land mobile constraints.

Another caveat is that the freeze probability is more difficult to define over the VHF bands than
it is for the UHF bands. Repacking issues can only arise in the VHF band due to relocation of
UHF stations, and so it is more difficult to find a simulation based approach that estimates VHF
freeze probabilities while remaining mechanism free.

We can compute the freeze probabilities of all UHF stations with good accuracy by performing a
sufficiently large number of simulations. We bound the maximum error seen across all stations
as follows. For each station, freezing is a binary process—it either does or does not happen.
Thus, for each station, our set of simulation runs yields a set of identical and independent
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Bernoulli trails. To bound the error seen for a given station, we can use classical concentration
bounds such as Chernoff. One complication is that we want to bound the maximum error
across all stations; since whether two stations freeze can be highly correlated, we use a union
bound to go from the error of individual stations to this overall maximum error.

We compute freeze probabilities using 11,500 trials. This number produces a maximum error of
2.36% with a confidence of 99%. Figure A19 shows the behavior of the maximum error and its
probability for our selected number of trials. The upper bounds shown are all derived using the
combination of Chernoff and union bounds discussed above. The (approximate) lower bound is
derived by calculating the exact distribution of the maximum error under the assumption that
freeze probabilities are independent. While freeze probabilities are not independent, this
assumption allows us to get an estimate of where the true maximum error is likely to lie. Figure
A20 shows the number of trials required for different error levels at a confidence of 99%.

Figure A19: Confidence of FR estimation

Figure A20: Trials and error of FR estimation

Figures A21 and A22 show maps of freeze probability and interference count. A key difference
is that freeze probability correctly identifies the challenges in border markets; whereas,
interference count does not. For example, in the Harlingen Weslaco Brownsville McAllen DMA,
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the interference count is relatively low, despite having a freezing probability of one due to
domain constraints.

Figure A21: Map of Freeze probability

Figure A22: Map of Interference constraint count

When freeze probabilities are used to compute volumes they are bounded below by 0.1 and
above by 0.8. The lower bound is introduced to obtain positive volumes for all stations, while
the upper bound limits the volumes for stations which freeze in most cases. Figure A23 shows
the distribution of freeze probability before and after bounds have been applied. The upper
bound applies to a small number of stations.
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Figure A23: Distribution of Freeze probability with and without bounds

Reweighted volume
The FCC has established in the Public Notice that, to fulfill its mandate, opening prices in the
reverse auction will be calculated using a station specific “volume” factor and an underlying
base clock price for a UHF station going off air.

The FCC has proposed to calculate a station’s volume using the formula

FCC volume = (Broadcast population) 1/2 × (Interference count) 1/2

Furthermore, the FCC has established that the interference component should measure a
station’s potential impact on repacking. The FCC proposed the Interference Count (IC) as a
measure of interference and Interference free broadcast population (IF) as a measure of
population.

As explained above, the empirical freezing probability (FR) of a station directly measures its
impact on repacking. Thus, a volume based on FR would better address the FCC’s stated
objectives.

Considering that a volume based on FR could be perceived as more complicated than the
originally proposed volume, several other alternatives were studied. In particular, we studied
variations on the exponents proposed by the FCC.

Improving the FCC volume formula by changing only its exponents have two major advantages:
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i) Uses the same inputs (IC and IF), hence minimizing the cost and time of analyzing
the change for interested parties, and

ii) Can approximate the effect a station has on repacking.

In order to select which coefficients better reflect the impact each station has on repacking we
did a regression analysis on the coefficients of the FCC formula. Specifically we analyzed
regressions of the form:

ln( ) *ln( ) ln( )i i i iFR c a IF b IC e

where iFR is the empirical freezing probability of station i , iIC is the Interference count for

station i and iIF is the interference free broadcast population of station i and ie is an error.
The following table contains basic descriptive measures of each variable. IF and IC measures
statistics are reported for the complete set of stations considered by the FCC. FR is reported
only for UHF stations.

Table A8: Summary statistics of IF, IC and FR

Min. 1st Qu. Median Mean 3rd Qu Max
IF 0 379,000 1,039,000 2,088,000 2,428,000 21,190,000
IC 0 41 71 74.49 106 220
FR 0 0.02855 0.24460 0.27180 0.45100 1.0000

The set of station on which the regression is run is of major importance. On the one hand,
stations with freezing probabilities close to 0% or close to 100% do not affect the auction
outcome. On the other hand, stations with freezing probabilities close to 50% can have
significant impacts on auction outcomes.

Specifically, stations with FR=0% can always be repacked, hence the results of the auction do
not change if these stations do not participate; if they participate these stations will remain
active until they exit the auction. Stations with FR=100% can never be repacked. If one of these
stations participates in the auction, it will be frozen for sure and cannot take the place of any
station in the repacked set.

Stations with FR away from the extremes of 0 and 1 determine the outcome of the auction as
variations in initial score among these stations determine the order of exit and hence change
the set of frozen and repacked stations. Thus, there is a trade off between the quantity and the
relevance of the data considered in each regression.

We considered a series of scenarios to determine the appropriate set of coefficients that would
achieve a good overall fit. We only consider stations with positive IC and IF in the analysis. Table
A9 shows the results of several regressions for different subsets of data. Each scenario only
considers stations that satisfy       Min FR FR Max FR . Regression results are in ascending
order by the sum of coefficients, column “a+b”.
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Table A9: Selected Regression Scenarios

a b a+b a% b% Max FR Min FR 
0.21 0.49 0.70 30% 70% 60% 10%
0.23 0.52 0.75 31% 69% 70% 10%
0.25 0.47 0.71 35% 65% 80% 10%
0.26 0.44 0.71 37% 63% 90% 10%
0.26 0.44 0.71 37% 63% 100% 10%
0.30 0.56 0.85 35% 65% 100% 6%
0.29 0.49 0.77 37% 63% 100% 7%
0.28 0.48 0.76 37% 63% 100% 8%
0.27 0.46 0.73 37% 63% 100% 9%

Based on our findings, we propose to use the following formula for volume:

Reweighted volume = (Broadcast population)1/4 × (Interference count)1/2

In order to select an appropriate trade off between the quantity and relevance of stations to be
included in the regression analysis we used the following measures for every subset considered:

21 (ln( ) ln( ))i iFiterror FR PFR
n

, where n is the number of stations, iFR is the freezing

probability of station i and iPFR is the fitted value.

21 (ln( ) ln( ))i iTotalerror FR PFR
N

, where N is the total number of stations, iFR is the

freezing probability of station i and iPFR is the fitted value. Stations with 0FR were

assigned a value of 0.0001FR

Figure A24 shows the trade off between normalized versions of these two measures for all
subsets of data considered. Fit error was normalized by dividing Fit error in each scenario by
the Maximum Fit error; that is, Fit error of scenario Max FR =100% and Min FR=0%. Total error
was normalized by dividing Total error in each scenario by the Maximum of Total error; that is,
Total error of scenario Max FR =60% and Min FR=20%.
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Figure A24: Tradeoff between quantity and relevance

In order to select a best scenario, a point along the curve displayed in Figure A24, we assigned a
“price” of one to each normalized error measure; that is, we give them the same weight. We
selected scenarios with the lowest “expenditure”—those scenarios that are “tangent” to the
line in Figure A24 when equal weight is put on quantity and relevance.
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Table A10: Regression Scenarios

a b Fit 
Error 

Total 
Error 

nFit 
Error 

(1) 

nTotal 
Error 

(2) 

(1)+(2) Max FR Min FR 

0.295 0.558 0.186 9.652 0.12 0.81 0.93 100% 6% 
0.232 0.520 0.127 10.238 0.08 0.86 0.94 70% 10% 
0.286 0.487 0.165 10.039 0.11 0.84 0.95 100% 7% 
0.282 0.480 0.158 10.111 0.10 0.84 0.95 100% 8% 
0.206 0.490 0.126 10.399 0.08 0.87 0.95 60% 10% 
0.269 0.461 0.146 10.307 0.10 0.86 0.96 100% 9% 
0.247 0.466 0.136 10.414 0.09 0.87 0.96 80% 10% 
0.263 0.444 0.140 10.444 0.09 0.87 0.96 100% 10% 
0.263 0.444 0.140 10.444 0.09 0.87 0.96 90% 10% 
0.256 0.431 0.133 10.571 0.09 0.88 0.97 100% 11%
0.220 0.408 0.088 10.952 0.06 0.91 0.97 70% 15%
0.255 0.410 0.125 10.698 0.08 0.89 0.98 100% 12%
0.252 0.388 0.118 10.835 0.08 0.91 0.98 100% 13%
0.192 0.377 0.085 11.142 0.06 0.93 0.99 60% 15%
0.250 0.368 0.110 10.973 0.07 0.92 0.99 100% 14%
0.235 0.360 0.096 11.119 0.06 0.93 0.99 80% 15%
0.251 0.338 0.100 11.148 0.07 0.93 1.00 100% 15%
0.251 0.338 0.100 11.148 0.07 0.93 1.00 90% 15%
0.242 0.320 0.094 11.330 0.06 0.95 1.01 100% 16%
0.235 0.310 0.091 11.450 0.06 0.96 1.02 100% 17%
0.187 0.331 0.063 11.708 0.04 0.98 1.02 70% 20%
0.228 0.301 0.088 11.571 0.06 0.97 1.02 100% 18%
0.221 0.286 0.083 11.736 0.05 0.98 1.03 100% 19%
0.155 0.293 0.058 11.970 0.04 1.00 1.04 60% 20%
0.204 0.279 0.072 11.897 0.05 0.99 1.04 80% 20%
0.221 0.251 0.076 11.941 0.05 1.00 1.05 100% 20%
0.221 0.251 0.076 11.941 0.05 1.00 1.05 90% 20%

Note: Selected scenarios in bold.

RZR prices

RZR prices are fundamental in determining the quantity and location of impaired licenses to be
offered in the forward auction. Stations that are deemed essential to meet a clearing target
before the auction begins determine impairment by accepting or rejecting the RZR price offered
in the reverse auction. The basic trade off is that high RZR prices will reduce impairment, but
increase the clearing cost somewhat. Clearly RZR prices should depend on carriers’ preferences
for avoiding impairment.
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To balance impairment and clearing costs of round zero frozen stations we considered a
number of RZR price formulas and settled on one of the simplest approaches. That is, RZR price
is a station’s opening price multiplied by a multiplier that is less than or equal to 1 and reflects
forward auction spectrum value of the particular station. This measure is used to determine the
RZR price to be offered to all stations in case they are frozen in round zero.

A station’s RZR price is calculated by multiplying a station’s opening price by its RZR Multiplier,
where

RZR Multiplier = (Local AWS 3 price/Maximum AWS 3 price)1/2

Local AWS 3 price = the weighted average of the prices, in $/MHzPop, paid in the AWS 3
auction for spectrum in the PEAs that a station’s contour touches. The weighting is done on the
basis of the interference free population that the station serves in each PEA, relative to the
station’s total interference free population coverage.

Maximum AWS 3 price = the maximum AWS 3 Price in the country, which was $5.55/MHzPop
for Chicago.

Figure A25 shows a map of the proposed RZR price.

Figure A25: Value based RZR prices
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It is also important to compare RZR prices and opening prices. Figures A26 and A27 do this for
the FCC and Reweighted volume, respectively, and a base price clock of $900.

Figure A26: RZR prices for FCC $900

Figure A27: RZR prices for Reweighted $900

Table A11 shows RZR prices for both the FCC volume and Reweighted volume in the DMAs
where stations are more likely to be offered a RZR price using a base clock price of $900.
However, Value based RZR prices tend to be higher in most DMAs.
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Table A11: RZR prices in DMAs with round zero freezes in million $

Note: RZR frequency = likelihood of round zero freeze with value multipliers of 1, 1.5 and 2

Simulation results

We have simulated 180 reverse auction scenarios. These include three variations of the base
clock price ($900, $1,250 and $1,500) and two volume metrics (FCC and Reweighted). We also
conducted robustness checks, raising reservation values by a multiplicative factor, equal to 1,
1.5, 2, 2.5 and 3, and adding unbiased random error terms to reservation values, using six
different random seeds. This section presents detailed simulation results for the base clock
prices of $900 and $1,500, and multiplicative factors of 1 and 2.

Figure A28 shows impaired PEA in each scenario. Only PEAs that are impaired in at least one
scenario are shown. Of these PEAs, Rochester, Buffalo, Jamestown, NY, Erie, PA and
Brownsville, TX are most frequently impaired.

DMA RZR frequency
All

FCC Reweighted
RZR Stations

FCC Reweighted
San Diego, CA 76.24%
Los Angeles, CA 61.73%
New York, NY 55.06%
Philadelphia, PA 47.82%
Detroit, MI 40.57%
Laredo, TX 39.81%
Wilkes Barre-Scranton, PA 37.44%
Palm Springs, CA 36.39%
Harlingen-Weslaco-Brownsville-McAllen, TX 34.89%
Rochester, NY 25.00%
Seattle-Tacoma, WA 20.00%
Harrisburg-Lancaster-Lebanon-York, PA 20.00%
Burlington, VT-Plattsburgh, NY 19.34%
Buffalo, NY 18.52%
Cleveland-Akron, OH 13.79%
Tucson, AZ 8.72%

255154 230134
567525 612572
713660 725680
538422 551430
367257 393282
6622 6321
258131 423239
15668 21099
6731 6831
12259 12662
234151 204108
383248 458296
10743 7229
10556 12770
246153 270178
11655 308
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Figure A28: Impaired PEA
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In the reverse auction with RZR impairment scheme, each station out of the 1,648 UHF stations
in the contiguous United States may be either (1) a non participant, (2) an impairing station, (3)
frozen in round zero, (4) frozen during the auction, and (5) exited during the auction. A non
participant is a station that rejects its opening price or RZR price and it can be repacked. An
impairing station is one that rejects its opening price or RZR price but it cannot be repacked. A
station is frozen at round zero if it accepts its RZR price. During the auction, a station can either
be frozen or exited.

Figure A29 shows the number of stations for each of the five statuses. As the value multiplier
rises, the number of non participants increases and there are more impairing stations or lower
optimized clearing target. The higher base clock price can help avoid costly impairments. Even
at value multiplier of 2, both FCC and Reweighted volumes with $1,500 base clock price can
achieve 126 MHz clearing target with reasonable amount of impairments. Moreover, the
Reweighted volume encourages more participations and is thereby less prone to impairments.



A 46

Figure A29: Station status

Figure A30 shows population coverage loss, clearing cost, and impairment in each scenario.
Clearing 126 MHz is achieved in all scenarios. On average, the Reweighted volume reduces
viewer loss and creates less impairments than the FCC volume. These significant improvements
from Reweighted volume and a higher base clock price increase clearing cost only slightly in
percentage terms holding the clearing target fixed.
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Figure A30: Population loss, clearing cost, blocks cleared, and impairment by scoring rule


